library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <- c(0, 5, 25, 50, 100)
nd <- length(doses)
# median survival time for placebo dose
mst.control <- 4
# shape parameter
sigma.true <- 0.5
# maximum hazard ratio between active dose and placebo dose
hr.ratio <- 4
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))
Delta <- (minEff.Delta - placEff)
## MCP Parameters
emax <- guesst(d = doses[4], p = 0.5, model="emax")
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])
logit <- guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic", Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50, Maxd= doses[nd])
models.candidate <- Mods(emax = emax, linear = NULL,
exponential = exp, logistic = logit,
betaMod = betam, doses = doses,
placEff = placEff, maxEff = (maxEff- placEff))
plot(models.candidate)
## True Model
model.true <- "emax"
response <- model_response(doses = doses,
distr = "weibull",
model.true = model.true,
models.candidate = models.candidate)
response
lambda.true <- response$lambda
parm <- list(lambda = lambda.true, sigma = sigma.true)
Run the code above in your browser using DataLab