Learn R Programming

MCPerm (version 1.1.4)

I2.TradPerm: Calculate p.value for Heterogeneity statistics I2 in meta analysis

Description

Calculate p.value for Heterogeneity statistics I2 in meta analysis

Usage

I2.TradPerm(genotypeData, affectionData, split, sep, naString, model = "allele", method = "MH", repeatNum = 1000)

Arguments

genotypeData
a matrix with one column and multiple rows, each row contains genotype data for case and control samples of certain study. Note the field separtor of each line must be same, and same with parameter 'affectionData'.
affectionData
a matrix with one column and multiple rows, each row contains the affection stats of case and control samples of certain study which must correspond to 'genotypeData'. Note the field separtor of each line must be same,and same with parameter 'genotypeData'.
split
the field separator character, which separates elements on each line of the parameter 'genotypeData' and 'affectionData'. 'Split' and 'sep' cannot be same.
sep
character separator used to divide genotype between alleles "Allele1Allele2" in parameter 'genotypeData'. 'Split' and 'sep' cannot be same.
naString
a character string for NA values of genotype data in parameter 'genotypeData'.
model
a character string indicating the type of model("allele"(default),"dominant" or "recessive") supplied to the data. The risk allele(see details) is marked as allele1. The allele model indicates allele1 versus allele2, the dominant model indicates + versus , the recessive model indicates versus + .
method
a character string indicating the method('Inverse','MH'(default) or 'Peto') to calculate Q value. See details.
repeatNum
an integer(default 1000) specifying the number of replicates used in the Monte Carlo permutation.

Value

risk_allele
the symbol of risk allele.See details.
I2
the I2 statistics for true meta data.
corrected_I2p
the p value for I2, the percentage of more than I2 value.

Details

Allele 1 and allele 2 to each study have OR values. The risk allele is the allele which the number of studies which OR>1 more than half of the number of all studies.

I2 is calculated by formula I2=max(Q-d.f./Q, 0), considering I2=1-24 moderate heterogeneity; I2=50-74

TradPerm details see chisq.TradPerm.

References

Julian P.T.Higgins, Simon G.Thompson(Statistics in Medicine,2002): Quantifying heterogeneity in a meta-analysis.

Julian P.T.Higgins, Simon G.Thompson, Jonathan J Deeks(BMJ,2003):Measuring inconsistency in meta-analyses.

See Also

meta.MCPerm, meta.TradPerm, Q.TradPerm, I2.MCPerm, chisq.MCPerm, chisq.TradPerm, VS.Hist, VS.KS, VS.Allele.Hist, VS.Genotype.Hist, PermMeta.LnOR.Hist, PermMeta.LnOR.CDC, PermMeta.Hist

Examples

Run this code
## import data
# data(MetaGenotypeData)
## delete first line which contains the names of each column
# temp=MetaGenotypeData[-1,];
# rowNum=nrow(temp)
# gen=matrix(0,nrow=rowNum,ncol=1);
# aff=matrix(0,nrow=rowNum,ncol=1);
# for(j in 1:rowNum){
	 # gen[j,]=paste(temp[j,14],temp[j,15],sep=" ");
	 # case_num=length(unlist(strsplit(temp[j,14],split=" ")));
	 # control_num=length(unlist(strsplit(temp[j,15],split=" ")));
	 # case_aff=paste(rep(2,case_num),collapse=" ");
	 # control_aff=paste(rep(1,control_num),collapse=" ");
	 # aff[j,]=paste(case_aff,control_aff,sep=" ");
# }
# result=I2.TradPerm(gen,aff,split=" ",sep="/",naString="-",
    # model="allele",method="MH",repeatNum=1000) 
# result

Run the code above in your browser using DataLab