meta.TradPerm(genotypeData, affectionData, split, sep, naString, model = "allele", fixed_method = "MH", random_method = "DL",
Qp_alpha = 0.01, repeatNum = 1000)
chisq.MCPerm
.TradPerm details see chisq.TradPerm
.
Hedges,L.V. & Vevea,J.L.(1998): Fixed- and random- effects models in meta-analysis.
permuteGenotype
,
permuteGenotypeCount
,
genotypeStat
,
OR.TradPerm
,
Armitage.TradPerm
,
chisq.TradPerm
,
fisher.TradPerm
,
meta
,
meta.MCPerm
,
VS.Genotype.Hist
,
VS.Allele.Hist
,
VS.Hist
,
PermMeta.LnOR.Hist
,
PermMeta.LnOR.CDC
,
PermMeta.LnOR.boxplot
,
PermMeta.boxplot
,
PermMeta.Hist
,
pearson_scatter
,
Q.TradPerm
,
I2.TradPerm
## import data
# data(MetaGenotypeData)
## delete first line which contains the names of each column
# temp=MetaGenotypeData[-1,];
# rowNum=nrow(temp)
# gen=matrix(0,nrow=rowNum,ncol=1);
# aff=matrix(0,nrow=rowNum,ncol=1);
# for(j in 1:rowNum){
# gen[j,]=paste(temp[j,14],temp[j,15],sep=" ");
# case_num=length(unlist(strsplit(temp[j,14],split=" ")));
# control_num=length(unlist(strsplit(temp[j,15],split=" ")));
# case_aff=paste(rep(2,case_num),collapse=" ");
# control_aff=paste(rep(1,control_num),collapse=" ");
# aff[j,]=paste(case_aff,control_aff,sep=" ");
# }
# result=meta.TradPerm(gen,aff,split=" ",sep="/",naString="-",
# model="allele",method="MH",repeatNum=1000)
# result
Run the code above in your browser using DataLab