Learn R Programming

MDFS (version 1.5.5)

MultiDimensional Feature Selection

Description

Functions for MultiDimensional Feature Selection (MDFS): calculating multidimensional information gains, scoring variables, finding important variables, plotting selection results. This package includes an optional CUDA implementation that speeds up information gain calculation using NVIDIA GPGPUs. R. Piliszek et al. (2019) .

Copy Link

Version

Install

install.packages('MDFS')

Monthly Downloads

359

Version

1.5.5

License

GPL-3

Maintainer

Radosław Piliszek

Last Published

December 12th, 2024

Functions in MDFS (1.5.5)

AddContrastVariables

Add contrast variables to data
ComputeInterestingTuples

Interesting tuples
ComputeMaxInfoGainsDiscrete

Max information gains (discrete)
ComputePValue

Compute p-values from information gains and return MDFS
GetRange

Get the recommended range for multiple discretisations
Discretize

Discretize variable on demand
MDFS

Run end-to-end MDFS
RelevantVariables.MDFS

Find indices of relevant variables from MDFS
ComputeInterestingTuplesDiscrete

Interesting tuples (discrete)
RelevantVariables

Find indices of relevant variables
ComputeMaxInfoGains

Max information gains
GenContrastVariables

Generate contrast variables from data
as.data.frame.MDFS

as.data.frame S3 method implementation for MDFS
madelon

An artificial dataset called MADELON
mdfs_omp_set_num_threads

Call omp_set_num_threads
plot.MDFS

Plot MDFS details