Learn R Programming

MDP2 (version 2.1.2)

getBinInfoActions: Info about the actions in the HMDP model under consideration.

Description

Info about the actions in the HMDP model under consideration.

Usage

getBinInfoActions(
  prefix = "",
  labels = TRUE,
  fileA = "actionIdx.bin",
  filePr = "transProb.bin",
  fileW = "actionWeight.bin",
  fileLabelW = "actionWeightLbl.bin",
  fileLabelA = "actionIdxLbl.bin"
)

Value

A data frame with the information. Scope string contain the scope of the transitions and can be 4 values:

  • 0: A transition to the next stage in the father process,

  • 1: A transition to next stage in the current process,

  • 2: A transition to a child process (stage zero in the child process),

  • 3: A transition to the state with sId = idx is considered.

The index string denote the index (id is scope = 3) of the state at the next stage.

Arguments

prefix

A character string with the prefix added to til binary files.

labels

Should labels be extracted.

fileA

The binary file containing the description of actions.

filePr

The binary file containing the description of transition probabilities.

fileW

The binary file containing the description of weights.

fileLabelW

The binary file containing the weight labels.

fileLabelA

The binary file containing the action labels.

Examples

Run this code
## Use temp dir
wd <- setwd(tempdir())

# Create a small HMDP with two levels
w<-binaryMDPWriter()
w$setWeights(c("Duration","Net reward","Items"))
w$process()
   w$stage()
      w$state(label="M0")
         w$action(label="A0",weights=c(0,0,0),prob=c(2,0,1))
            w$process()
               w$stage()
                  w$state(label="D")
                     w$action(label="A0",weights=c(0,0,1),prob=c(1,0,0.5,1,1,0.5))
                     w$endAction()
                  w$endState()
               w$endStage()
               w$stage()
                  w$state(label="C0")
                     w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
                     w$endAction()
                     w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
                     w$endAction()
                  w$endState()
                  w$state(label="C1")
                     w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
                     w$endAction()
                     w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
                     w$endAction()
                  w$endState()
               w$endStage()
               w$stage()
                  w$state(label="C0")
                     w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
                     w$endAction()
                  w$endState()
                  w$state(label="C1")
                     w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
                     w$endAction()
                  w$endState()
               w$endStage()
            w$endProcess()
         w$endAction()
         w$action(label="A1",weights=c(0,0,0),prob=c(2,0,1))
            w$process()
               w$stage()
                  w$state(label="D")
                     w$action(label="A0",weights=c(0,0,1),prob=c(1,0,1))
                     w$endAction()
                  w$endState()
               w$endStage()
               w$stage()
                  w$state(label="C0")
                     w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
                     w$endAction()
                     w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
                     w$endAction()
                  w$endState()
               w$endStage()
               w$stage()
                  w$state(label="C0")
                     w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
                     w$endAction()
                  w$endState()
                  w$state(label="C1")
                     w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
                     w$endAction()
                     w$action(label="A1",weights=c(0,10,5),prob=c(0,0,0.5,0,1,0.5))
                     w$endAction()
                  w$endState()
               w$endStage()
            w$endProcess()
         w$endAction()
      w$endState()
      w$state(label="M1")
         w$action(label="A0",weights=c(0,0,0),prob=c(2,0,1))
            w$process()
               w$stage()
                  w$state(label="D")
                     w$action(label="A0",weights=c(0,0,1),prob=c(1,0,0.5,1,1,0.5))
                     w$endAction()
                  w$endState()
               w$endStage()
               w$stage()
                  w$state(label="C0")
                     w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
                     w$endAction()
                  w$endState()
                  w$state(label="C1")
                     w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
                     w$endAction()
                  w$endState()
               w$endStage()
               w$stage()
                  w$state(label="C0")
                     w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
                     w$endAction()
                  w$endState()
                  w$state(label="C1")
                     w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
                     w$endAction()
                  w$endState()
               w$endStage()
            w$endProcess()
         w$endAction()
      w$endState()
   w$endStage()
w$endProcess()
w$closeWriter()

## Info about the binary files (don't have to load the model first)
getBinInfoStates()
getBinInfoActions()

## reset working dir
setwd(wd)

Run the code above in your browser using DataLab