Learn R Programming

MDP2 (version 2.1.2)

runCalcWeights: Calculate weights based on current policy. Normally run after an optimal policy has been found.

Description

Calculate weights based on current policy. Normally run after an optimal policy has been found.

Usage

runCalcWeights(
  mdp,
  wLbl,
  criterion = "expected",
  durLbl = NULL,
  rate = 0,
  rateBase = 1,
  discountFactor = NULL,
  termValues = NULL,
  discountMethod = "continuous"
)

Value

Nothing.

Arguments

mdp

The MDP loaded using loadMDP().

wLbl

The label of the weight we consider.

criterion

The criterion used. If expected used expected reward, if discount used discounted rewards, if average use average rewards.

durLbl

The label of the duration/time such that discount rates can be calculated.

rate

The interest rate.

rateBase

The time-horizon the rate is valid over.

discountFactor

The discount rate for one time unit. If specified rate and rateBase are not used to calculate the discount rate.

termValues

The terminal values used (values of the last stage in the MDP).

discountMethod

Either 'continuous' or 'discrete', corresponding to discount factor exp(-rate/rateBase) or 1/(1 + rate/rateBase), respectively. Only used if discountFactor is NULL.

Examples

Run this code
## Set working dir
wd <- setwd(tempdir())

# Create the small machine repleacement problem used as an example in L.R. Nielsen and A.R.
# Kristensen. Finding the K best policies in a finite-horizon Markov decision process. European
# Journal of Operational Research, 175(2):1164-1179, 2006. doi:10.1016/j.ejor.2005.06.011.

## Create the MDP using a dummy replacement node
prefix<-"machine1_"
w <- binaryMDPWriter(prefix)
w$setWeights(c("Net reward"))
w$process()
   w$stage()   # stage n=0
      w$state(label="Dummy")          # v=(0,0)
         w$action(label="buy", weights=-100, prob=c(1,0,0.7, 1,1,0.3), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=1
      w$state(label="good")           # v=(1,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.6, 1,1,0.4), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(1,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.6, 1,2,0.4), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=2
      w$state(label="good")           # v=(2,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.5, 1,1,0.5), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(2,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.5, 1,2,0.5), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(2,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(1,3,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=3
      w$state(label="good")           # v=(3,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.2, 1,1,0.8), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(3,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.2, 1,2,0.8), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(3,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(1,3,1), end=TRUE)
      w$endState()
      w$state(label="replaced")       # v=(3,3)
         w$action(label="Dummy", weights=0, prob=c(1,3,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=4
      w$state(label="good", end=TRUE)        # v=(4,0)
      w$state(label="average", end=TRUE)     # v=(4,1)
      w$state(label="not working", end=TRUE) # v=(4,2)
      w$state(label="replaced", end=TRUE)    # v=(4,3)
   w$endStage()
w$endProcess()
w$closeWriter()

## Load the model into memory
mdp<-loadMDP(prefix)
mdp
plot(mdp)

getInfo(mdp, withList = FALSE)
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = TRUE)
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = FALSE)

## Perform value iteration
w<-"Net reward"             # label of the weight we want to optimize
scrapValues<-c(30,10,5,0)   # scrap values (the values of the 4 states at stage 4)
runValueIte(mdp, w, termValues=scrapValues)
getPolicy(mdp)     # optimal policy

## Calculate the weights of the policy always to maintain
library(magrittr)
policy <- getInfo(mdp, withList = FALSE, dfLevel = "action")$df %>% 
   dplyr::filter(label_action == "mt") %>% 
   dplyr::select(sId, aIdx)
setPolicy(mdp, policy)
runCalcWeights(mdp, w, termValues=scrapValues)
getPolicy(mdp)  



# The example given in L.R. Nielsen and A.R. Kristensen. Finding the K best
# policies in a finite-horizon Markov decision process. European Journal of
# Operational Research, 175(2):1164-1179, 2006. doi:10.1016/j.ejor.2005.06.011,
# does actually not have any dummy replacement node as in the MDP above. The same
# model can be created using a single dummy node at the end of the process.

## Create the MDP using a single dummy node
prefix<-"machine2_"
w <- binaryMDPWriter(prefix)
w$setWeights(c("Net reward"))
w$process()
   w$stage()   # stage n=0
      w$state(label="Dummy")          # v=(0,0)
         w$action(label="buy", weights=-100, prob=c(1,0,0.7, 1,1,0.3), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=1
      w$state(label="good")           # v=(1,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.6, 1,1,0.4), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(1,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.6, 1,2,0.4), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=2
      w$state(label="good")           # v=(2,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.5, 1,1,0.5), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(2,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.5, 1,2,0.5), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(2,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(3,12,1), end=TRUE) # transition to sId=12 (Dummy)
      w$endState()
   w$endStage()
   w$stage()   # stage n=3
      w$state(label="good")           # v=(3,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.2, 1,1,0.8), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(3,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.2, 1,2,0.8), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(3,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(3,12,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=4
      w$state(label="good")        # v=(4,0)
         w$action(label="rep", weights=30, prob=c(1,0,1), end=TRUE)
      w$endState()
      w$state(label="average")     # v=(4,1)
         w$action(label="rep", weights=10, prob=c(1,0,1), end=TRUE)
      w$endState()
      w$state(label="not working") # v=(4,2)
         w$action(label="rep", weights=5, prob=c(1,0,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=5
      w$state(label="Dummy", end=TRUE)        # v=(5,0)
   w$endStage()
w$endProcess()
w$closeWriter()

## Have a look at the state-expanded hypergraph
mdp<-loadMDP(prefix)
mdp
plot(mdp)

getInfo(mdp, withList = FALSE)
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = TRUE)
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = FALSE)

## Perform value iteration
w<-"Net reward"             # label of the weight we want to optimize
runValueIte(mdp, w, termValues = 0)
getPolicy(mdp)     # optimal policy

## Calculate the weights of the policy always to maintain
library(magrittr)
policy <- getInfo(mdp, withList = FALSE, dfLevel = "action")$df %>% 
   dplyr::filter(label_action == "mt") %>% 
   dplyr::select(sId, aIdx)
setPolicy(mdp, policy)
runCalcWeights(mdp, w, termValues=scrapValues)
getPolicy(mdp)  


## Reset working dir
setwd(wd)

Run the code above in your browser using DataLab