Learn R Programming

MECfda (version 0.2.0)

numeric_basis_expansion: Numeric basis expansion for functional variable data

Description

For a function \(f(t), t\in\Omega\), and a basis function sequence \(\{\rho_k\}_{k\in\kappa}\), basis expansion is to compute \(\int_\Omega f(t)\rho_k(t) dt\). Here we do basis expansion for all \(f_i(t), t\in\Omega = [t_0,t_0+T]\) in functional variable data, \(i=1,\dots,n\). We compute a matrix \((b_{ik})_{n\times p}\), where \(b_{ik} = \int_\Omega f(t)\rho_k(t) dt\). The basis we use here is numerically represented by the value of basis functions at some points in the domain.

Usage

numeric_basis_expansion(object, num_basis)

# S4 method for functional_variable,numeric_basis numeric_basis_expansion(object, num_basis)

Value

Returns a numeric matrix, \((b_{ik})_{n\times p}\), with an extra attribute numeric_basis, which is the numeric_basis object input by the argument num_basis.

Arguments

object

a functional_variable class object. The minimum and maximum of the slot t_points should be respectively equal to the slot t_0 and slot t_0 plus slot period.

num_basis

a numeric_basis class object, representing the function basis. See numeric_basis.

Author

Heyang Ji