Fourier_series-class: s4 class of Fourier summation series
Description
A s4 class that represents the linear combination of Fourier basis functions below:
$$\frac{a_0}{2} +
\sum_{k=1}^{p_a} a_k \cos{(\frac{2\pi}{T}k(x-t_0))} +
\sum_{k=1}^{p_b} b_k \sin{(\frac{2\pi}{T}k(x-t_0))},
\qquad x\in[t_0,t_0+T]$$
Arguments
Slots
double_constant
value of \(a_0\).
cos
values of coefficients of \(\cos\) waves, \(a_k\).
sin
values of coefficients of \(\sin\) waves, \(b_k\).
k_cos
values of \(k\) corresponding to the coefficients of \(\cos\) waves
k_sin
values of \(k\) corresponding to the coefficients of \(\sin\) waves
t_0
left end of the domain interval, \(t_0\)
period
length of the domain interval, \(T\).
Author
Heyang Ji
Details
If not assigned, \(t_0 = 0\), \(T = 2\pi\).
If not assigned, k_cos and k_sin equals 1, 2, 3, ...