Learn R Programming

MExPosition (version 2.0.3)

mpANISOSTATIS: mpANISOSTATIS.core: ANISOSTATIS via MExPositio

Description

All ANISOSTATIS steps are combined in this function. It enables preparation of the data, processing and graphing.

Usage

mpANISOSTATIS(data, anisostatis.option = 'ANISOSTATIS_Type1', column.design, make.columndesign.nominal = TRUE, DESIGN =NULL, make.design.nominal = TRUE, graphs = TRUE)

Arguments

data
Data Matrix
anisostatis.option
ANISOSTATIS string ptions: 'ANISOSTATIS_Type1' or 'ANISOSTATIS_Type2'
column.design
Matrix used to identify tables of data matrix
make.columndesign.nominal
a boolean. If TRUE (default), table is a vector that indicates groups (and will be dummy-coded). If FALSE, table is a dummy-coded matrix.
DESIGN
a design matrix to indicate if rows belong to groups.
make.design.nominal
Boolean option. If TRUE (default), table is a vector that indicates groups (and will be dummy-coded). If FALSE, table is a dummy-coded matrix.
graphs
Boolean option. If TRUE (default), graphs are displayed

Value

Returns a large list of items which are divided into four categories:
$Overview
Overview of Results
$InnerProduct
Results for the Inner Product
$Compromise
Results for the Compromise
$Table
Results for the Tables
The results for Overview are bundled inside of $Overview.
$Overview$data
Data Matrix
$Overview$groupmatrix
Matrix used to identify the different tables of the data matrix
$Overview$preprocess.data
Preprocessed data matrix
$Overview$num.groups
Number of Tables
$Overview$num.obs
Number of Observations
$Overview$row.preprocess
Row Preprocess Option used
$Overview$column.preprocess
Column Preprocess Option used
$Overview$Table.preprocess
Table Preprocess Option used
The results for InnerProduct are bundled inside of $InnerProduct
$InnerProduct$S
Inner Product: Scalar Product Matrices
$InnerProduct$C
Inner Product: C Matrix
$InnerProduct$RVMatrix
Inner Product: RV Matrix
$InnerProduct$eigs.vector
Inner Product: Eigen Vectors
$InnerProduct$eigs
Inner Product: Eigen Values
$InnerProduct$fi
Inner Product: Factor Scores
$InnerProduct$t
Inner Product: Percent Variance Explained
$InnerProduct$ci
Inner Product: Contribution of the Rows
$InnerProduct$cj
Inner Product: Contribution of the Columns
$InnerProduct$alphaWeights
Alpha Weights
The results for the Compromise are bundled inside of $Compromise
compromise
Compromise Matrix
compromise.eigs
Compromise: Eigen Values
compromise.eigs.vector
Compromise: Eigen Vector
compromise.fi
Compromise: Factor Scores
Compromise.t
Compromise: Percent Variance Explained
compromise.ci
Compromise: Contributions of the rows
compromise.cj
Compromise: Contributions of the Columns
The results for the Tables are bundled inside of $Table.
$m
Table: masses
$Table$eigs
Table: Eigen Values
$Table$eigs.vector
Table: Eigen Vectors
$Table$Q
Table: Loadings
$Table$fi
Table: Factor Scores
$Table$partial.fi
Table: Partial Factor Scores
$Table$partial.fi.array
Table: Arrray of Partial Factor Scores
Table$ci
Table: Contribition of the Rows
$Table$cj
Table: Contribution of the Columns
$Table$t
Table: Percent Variance Explained

Details

mpANISOSTATIS computes Anisotropic STATIS, where the one weight is assigned per variable.

References

Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M. (2012). STATIS and DISTATIS: Optimum multi-table principal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computational Statistics, 4, 124-167. Abdi, H., Valentin, D., Chollet, S., & Chrea, C. (2007). Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Quality and Preference, 18, 627-640. Abdi, H., & Valentin, D. (2005). DISTATIS: the analysis of multiple distance matrices. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 284-290.

See Also

mpANISOSTATIS.core

Examples

Run this code
# ANOISTATIS Type 1
  data('wines2012')
	data = wines2012$data
	column.design = wines2012$table
	row.design= c('NZ','NZ','NZ','NZ','FR','FR','FR','FR','CA','CA','CA','CA')
	demo.anisostatis1 <- mpANISOSTATIS(data,anisostatis.option='ANISOSTATIS_Type1',
  column.design = column.design)

# ANISOSTATISType 2
  data('wines2012')
	data = wines2012$data
	column.design = wines2012$table
	row.design = c('NZ','NZ','NZ','NZ','FR','FR','FR','FR','CA','CA','CA','CA')
	demo.anisostatis2 <- mpANISOSTATIS(data,anisostatis.option='ANISOSTATIS_Type2',
  column.design = column.design)

Run the code above in your browser using DataLab