Learn R Programming

MExPosition (version 2.0.3)

mpSTATIS: mpSTATIS: STATIS via MExPosition

Description

All STATIS steps are combined in this function. It enables preprocessing, processing, optimization and supplementary projections which is computed using the STATIS method of analysis.

Usage

mpSTATIS(data, column.design, make.columndesign.nominal = TRUE, row.design = NULL, make.rowdesign.nominal = FALSE, statis.prepro.option = 'Plain_STATIS', DESIGN = NULL, make.design.nominal = TRUE, graphs = TRUE)

Arguments

data
Matrix of raw data
column.design
Matrix which identifies the different tables.
make.columndesign.nominal
a boolean. If TRUE (default), table is a vector that indicates groups (and will be dummy-coded). If FALSE, table is a dummy-coded matrix.
row.design
Matrix which identifes the different groups.
make.rowdesign.nominal
a boolean. If TRUE (default), table is a vector that indicates groups (and will be dummy-coded). If FALSE, table is a dummy-coded matrix.
statis.prepro.option
String option for the STATIS presets. The following options are available: 'Plain_STATIS', 'MFA', 'Sum_PCA', 'Plain_Multitable', 'Plain_ANISOSTATIS' and 'Customization.'
graphs
a boolean. If TRUE (default), graphs are displayed
DESIGN
a design matrix to indicate if rows belong to groups.
make.design.nominal
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, design is a dummy-coded matrix.

Value

Returns a large list of items which are divided into three categories
$Overview
Overview of Results
$InnerProduct
Results for the Inner Product
$Table
Results for the Tables
The results for Overview are bundled inside of $Overview.
$Overview$data
Data Matrix
$Overview$groupmatrix
Table which indicates the tables
$Overview$preprocess.data
Preprocessed Data Matrix
$Overview$num.groups
Number of Groups
$Overview$num.obs
Number of Observations
$Overview$row.preprocess
Option of row preprocessing selected
$Overview$column.preprocess
Option of column preprocessing selected
$Overview$table.preprocess
Option of table preprocessing selected
The results for InnerProduct are bundled inside of $InnerProduct
$InnerProduct$S
Inner Product: Scalar Product Matrices
$InnerProduct$RVMatrix
Inner Product: RV Matrix
$InnerProduct$C
Inner Product: C Matrix
$InnerProduct$eigs.vector
Inner Product: Eigen Vectors
$InnerProduct$eigs
Inner Product: Eigen Values
$InnerProduct$fi
Inner Product: Factor Scores
$InnerProduct$t
Inner Product: Percent Variance Explained (tau)
$InnerProduct$alphaWeights
Alpha Weights (alpha)
The results for the Compromise are bundled inside of $Compromise
$Compromise$compromise
Compromise Matrix
$Compromise$compromise.eigs
Compromise: Eigen Values
$Compromise$compromise.eigs.vector
Compromise: Eigen Vector
$Compromise$compromise.fi
Compromise: Factor Scores
$Compromise$compromise.t
Compromise: Percent Variance Explained
$Compromise$compromise.ci
Compromise: Contributions of the rows
$Compromise$compromise.cj
Compromise: Contributions of the Columns
The results for the Tables are bundled inside of $Table.
$Table$eigs
Table: Eigen Values
$Table$eigs.vector
Table: Eigen Vectors
$Table$Q
Table: Loadings
$Table$fi
Table: Factor Scores
$Table$partial.fi
Table: Partial Factor Scores
$Table$partial.fi.array
Table: Array of Partial Factor Scores
$Table$ci
Table: Contribution of the rows
$Tabl$cj
Table: Contribution of the columns
$Table$t
Table: Percent of variance explained

Details

mpSTATIS performs STATIS on a set of data matrices measured on the same set of observations. If statis.prepro.option is set to 'Customization,' the options for row, column, table prepreprocessing and optimization will be selected via the R console.

References

Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M. (2012). STATIS and DISTATIS: Optimum multi-table principal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computational Statistics, 4. Abdi, H., & Valentin, D. (2007). STATIS. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Sage. pp. 955-962.

See Also

mpDISTATIS

Examples

Run this code
data('wines2012')
design=c('NZ','NZ','NZ','NZ','FR','FR','FR','FR','CA','CA','CA','CA')
demo.statis.2012 <- mpSTATIS(wines2012$data, column.design = wines2012$table, 
statis.prepro.option = 'Plain_STATIS', DESIGN = design, graphs = TRUE )

Run the code above in your browser using DataLab