Learn R Programming

MExPosition (version 2.0.3)

mpSTATIS.preprocess: mpSTATIS.preprocess: Preprocessing for STATIS

Description

Combines all preprocessing choices, and prepares the data for STAITS processing.

Usage

mpSTATIS.preprocess(data, column.design = NULL, row.design = NULL, row.preprocess = 'None', column.preprocess = 'None', table.preprocess = 'None', make.columndesign.nominal = TRUE, make.rowdesign.nominal = TRUE)

Arguments

data
Data Matrix
column.design
Matrix which identifies the tables.
row.design
Matrix which identifies the groups
row.preprocess
String option for row preprocessing with the following options: 'None' (default), 'Profile', 'Hellinger', 'Center' and 'Center_Hellinger'
column.preprocess
String option for column preprocessing with the following options: 'None' (default), 'Center', '1Norm', 'Center_1Norm' and 'Z_Score'
table.preprocess
String option for table preprocessing with the following options: 'None' (default), 'Num_Columns', 'Tucker', 'Sum_PCA', 'RV_Normalization' and 'MFA_Normalization'
make.columndesign.nominal
a boolean. If TRUE (default), table is a vector that indicates groups (and will be dummy-coded). If FALSE, table is a dummy-coded matrix.
make.rowdesign.nominal
a boolean. If TRUE (default), table is a vector that indicates groups (and will be dummy-coded). If FALSE, table is a dummy-coded matrix.

Value

data.preprocessed
Matrix of the Preprocessed Data
num.obs
Number of Observations
col.groups
Original matrix which was selected in the initial step
groupMatrix
Matrix which identifies the Tables
numgroups
Number of Tables
table.ids
Table IDs
row.preprocess
Option of row preprocessing selected
column.preprocess
Option of column preprocessing selected
table.preprocess
Option of table preprocessing selected

Details

This function calls all the preprocessing functions and consolidates the results. In addition it prepares the group matrix, and gets the data ready for processing.

References

Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M. (2012). STATIS and DISTATIS: Optimum multi-table principal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computational Statistics, 4, 124-167

See Also

mpSTATIS.rowPreproc, mpSTATIS.columnPreproc, mpSTATIS.tablePreproc

Examples

Run this code
X <- matrix(1:10,2)
Y<- as.matrix(c('g1','g1','g1','g2','g2'))
row.preprocess='Center'
column.preprocess='Center'
table.preprocess='Sum_PCA'
preproc <-mpSTATIS.preprocess(X, column.design = t(Y), row.preprocess = row.preprocess,
 column.preprocess = column.preprocess, table.preprocess = table.preprocess)

Run the code above in your browser using DataLab