Learn R Programming

MF (version 4.3.2)

MFClusBoot: Boostrap MF CI from clustered data

Description

Estimates bootstrap confidence intervals for the mitigated fraction from clustered or stratified data.

Usage

MFClusBoot(formula, data, compare = c("con", "vac"), boot.cluster = TRUE, boot.unit = FALSE, b = 100, B = 100, alpha = 0.05, hpd = TRUE, return.boot = FALSE, trace.it = FALSE)

Arguments

formula
Formula of the form y ~ x + cluster(w), where y is a continuous response, x is a factor with two levels of treatment, and w is a factor indicating the clusters.
data
Data frame. See Note for handling of input data with more than two levels.
compare
Text vector stating the factor levels - compare[1] is the control or reference group to which compare[2] is compared
boot.cluster
Resample the clusters? Default TRUE
boot.unit
Resample the units within cluster? Default FALSE
b
Number of bootstrap samples to take with each cycle
B
Number of cycles, giving the total number of samples = B * b
alpha
Complement of the confidence level
hpd
Estimate highest density intervals? Default TRUE
return.boot
Save the bootstrap sample of the MF statistic? Default FALSE
trace.it
Verbose tracking of the cycles? Default FALSE

Value

a mfbootcluster-class data object

Details

Resamples the data and produces bootstrap confidence intervals. Equal tailed intervals are estimated by the percentile method. Highest density intervals are estimated by selecting the shortest of all possible intervals.

References

Siev D. (2005). An estimator of intervention effect on disease severity. Journal of Modern Applied Statistical Methods. 4:500--508 Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman and Hall, New York, 1993.

Examples

Run this code
## Not run: 
# MFClusBoot(lesion ~ group + cluster(litter), piglung)
# 
# #  Bootstrapping clusters. . . . .
# #
# #  10000 bootstrap samples of clusters
# #  Comparing vac to con
# #
# #   95% confidence interval
# #
# #                   observed    median      lower     upper
# #  Equal Tailed    0.3533835 0.3630573 0.07382550 0.6567271
# #  Highest Density 0.3533835 0.3630573 0.07262462 0.6551724
# #
# #  Excluded Clusters
# #  [1] M, Q, R, B, O, V, I, C
# 
# MFClusBoot(lesion ~ group + cluster(litter), piglung, boot.unit = T, b = 12, B = 12)
# 
# #### 144 resamples to save time
# #
# #  Bootstrapping clusters. . . . . . . . . . . . . . . .
# #  Bootstrapping units. . . . . . . . . . . . . . . . .
# #
# #  10000 bootstrap samples of clusters and units in treatment in cluster
# #  Comparing vac to con
# #
# #   95% confidence interval
# #
# #                   observed    median         lower     upper
# #  Equal Tailed    0.3533835 0.3714286 -0.0138888889 0.7162213
# #  Highest Density 0.3533835 0.3714286 -0.0001472081 0.7297387
# #
# #  Excluded Clusters
# #  [1] M, Q, R, B, O, V, I, C
# ## End(Not run)

Run the code above in your browser using DataLab