estimateobject of class "vector", containing the parameter estimates.
SEobject of class "vector",
containing the standard errors of the estimates.
vcovobject of class "matrix",
the variance covariance matrix of the parameter estimates.
logLobject of class "numeric", 
the fitted log likelihood.
BICobject of class "numeric", 
Bayesian information criterion.
AICobject of class "numeric",
Akaike information criterion.
LRTpvalueobject of class "numeric",
likelihood ratio test p value.
gradientobject of class "numeric" or "matrix",
containing the gradient.
iterobject of class "numeric", 
number of iteration used.
distributionobject of class "character",
the distribution fitted.
fittedobject of class "vector",
the fitted mean of each category.
LRTobject of class "numeric", 
the likelihood ratio test statistic.