call
object of class "call"
.
data
object of class "list"
,
consists of both the predictor matrix and the response matrix.
coefficients
object of class "matrix"
,
the estimated parameters.
logL
object of class "numeric"
,
the loglikelihood.
BIC
object of class "numeric"
,
AIC
object of class "numeric"
,
Akaike information criterion.
Dof
object of class "numeric"
,
the degrees of freedom.
iter
object of class "numeric"
,
the number of iteration used.
maxlambda
object of class "numeric"
,
the maximum tuning parameter that ensures the estimated regression coefficients are not all zero.
lambda
object of class "numeric"
,
the tuning parameter used.
distribution
object of class "character"
,
the distribution fitted.
penalty
Object of class "character"
,
the chosen penalty when running penalized regression.