### Example 1
n=10
p=100
G=3
ytrain=rep(1:G,each=n)
set.seed(1)
xtrain=matrix(rnorm(p*n*G),n*G,p)
# find optimal tuning parameter
out.cv=cv.dLDA(xtrain,ytrain)
# find V
V=dLDA(xtrain,ytrain,lambda=out.cv$lambda_min)
# number of non-zero features
sum(rowSums(V)!=0)
Run the code above in your browser using DataLab