# \donttest{
###############################################################################
## two-sample
## iter = 1000 to reduce check time
###############################################################################
rx <- function(n) rnorm(n, mean = 0, sd = 1)
ry <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 65, n.max = 70, step.size = 1,
iter = 1000, BREAK = FALSE)
## compared to
power.t.test(delta = 0.5, power = 0.8)
rx <- function(n) rnorm(n, mean = 0, sd = 1)
ry <- function(n) rnorm(n, mean = 0.5, sd = 1.5)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000, alternative = "less")
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 85, n.max = 90, step.size = 1,
iter = 1000, BREAK = FALSE, alternative = "less")
## compared to
power.welch.t.test(delta = 0.5, sd = 1, sd2 = 1.5, power = 0.8, alternative = "one.sided")
rx <- function(n) rnorm(n, mean = 0.5, sd = 1)
ry <- function(n) rnorm(n, mean = 0, sd = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000, alternative = "greater")
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 50, n.max = 55, step.size = 1,
iter = 1000, BREAK = FALSE, alternative = "greater")
## compared to
power.t.test(delta = 0.5, power = 0.8, alternative = "one.sided")
rx <- function(n) rgamma(n, scale = 10, shape = 1)
ry <- function(n) rgamma(n, scale = 15, shape = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 200, iter = 1000)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 125, n.max = 135, step.size = 1,
iter = 1000, BREAK = FALSE)
###############################################################################
## one-sample
## iter = 1000 to reduce check time
###############################################################################
rx <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.max = 100, iter = 1000)
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.min = 33, n.max = 38,
step.size = 1, iter = 1000, BREAK = FALSE)
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample")
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.max = 100, iter = 1000,
alternative = "greater")
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.min = 25, n.max = 30,
step.size = 1, iter = 1000, BREAK = FALSE, alternative = "greater")
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample", alternative = "one.sided")
sim.ssize.wilcox.test(rx = rx, mu = 1, type = "one.sample", n.max = 100, iter = 1000,
alternative = "less")
sim.ssize.wilcox.test(rx = rx, mu = 1, type = "one.sample", n.min = 20, n.max = 30,
step.size = 1, iter = 1000, BREAK = FALSE, alternative = "less")
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample", alternative = "one.sided")
rx <- function(n) rgamma(n, scale = 10, shape = 1)
sim.ssize.wilcox.test(rx = rx, mu = 5, type = "one.sample", n.max = 200, iter = 1000)
sim.ssize.wilcox.test(rx = rx, mu = 5, type = "one.sample", n.min = 40, n.max = 50,
step.size = 1, iter = 1000, BREAK = FALSE)
###############################################################################
## paired
## identical to one-sample, requires random number generating function
## that simulates the difference x-y
## iter = 1000 to reduce check time
###############################################################################
rxy <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rxy, mu = 0, type = "paired", n.max = 100,
iter = 1000)
sim.ssize.wilcox.test(rx = rxy, mu = 0, type = "paired", n.min = 33,
n.max = 38, step.size = 1, iter = 1000, BREAK = FALSE)
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "paired")
# }
Run the code above in your browser using DataLab