## Fit the model under different situations for NAEP data
data(naep)
multi1 = 1:12
multi2 = 2:12
# Rasch model and 2PL with two dimensions (within)
out10 = est_multi_poly_within(naep,k1=3,k2=3,multi1=multi1,multi2=multi2,link=1,disp=TRUE,
out_se=TRUE)
out11 = est_multi_poly_within(naep,k1=3,k2=3,multi1=multi1,multi2=multi2,link=1,disc=1,
disp=TRUE,out_se=TRUE)
# fit the model under different situations for RLMS data
# example of use of the function to account for non-ignorable missing responses
data(RLMS)
X = RLMS[,1:4]
Y = RLMS[,6:9]
YR = cbind(Y,1*(!is.na(Y)))
multi1 = 1:4
multi2 = 5:8
# MAR model
out0 = est_multi_poly_within(YR,X=X,k1=3,k2=2,multi1=multi1,multi2=multi2,link=1,difl=1,
disc=1,glob=1,disp=TRUE,out_se=TRUE)
# NMAR model
multi1 = 1:8
out1 = est_multi_poly_within(YR,X=X,k1=3,k2=2,multi1=multi1,multi2=multi2,link=1,difl=1,
disc=1,glob=1,disp=TRUE,out_se=TRUE)
# testing effect of the latent trait on missingness
c(out0$bic,out1$bic)
test1 = out1$ga1c[-1]/out1$sega1Run the code above in your browser using DataLab