## Not run:
# # Estimation of a LC-IRT model with a within-item multidimensional
# # structure
# data(SF12_nomiss)
# S = SF12_nomiss[,1:12]
# X = SF12_nomiss[,13]
# # Define matrices to allocate each item on the latent variables
# multi1=rbind(1:6, 7:12)
# multi2=rbind(4:8, c(2:3, 10:12))
# # Graded response model with two primary latent variables, each of them
# # having two dimensions (free discrimination and difficulty parameters;
# # two latent classes for both the latent variables; one covariate):
# tol = 10^-6 # decrease the tolerance to obtain more reliable results
# out1 = est_multi_poly_within(S=S,k1=2,k2=2,X=X,link="global",disc=TRUE,
# multi1=multi1,multi2=multi2,tol=tol,
# disp=TRUE,out_se=FALSE)
# # Display output
# summary.est_multi_poly_within(out1)
# ## End(Not run)
Run the code above in your browser using DataLab