## Not run:
# # Fit the model under different within-item multidimensional structures
# # for SF12_nomiss data
# data(SF12_nomiss)
# S = SF12_nomiss[,1:12]
# X = SF12_nomiss[,13]
#
# # Graded response model with two latent variables sharing six items (free
# # discrimination and difficulty parameters; two latent classes for each
# # latent variable; one covariate):
# multi1 = c(1:5, 8:12)
# multi2 = c(6:12, 1)
# tol = 10^-6 # decrease tolerance to obtain more reliable results
# out1 = est_multi_poly_within(S=S,k1=2,k2=2,X=X,link="global",disc=TRUE,
# multi1=multi1,multi2=multi2,disp=TRUE,
# out_se=TRUE,tol=tol)
#
# # Partial credit model with two latent variables sharing eleven items
# # (free discrimination and difficulty parameters; two latent classes for
# # the 1st latent variable and three latent classes for the 2nd latent
# # variable; one covariate):
# multi1 = 1:12
# multi2 = 2:12
# out2 = est_multi_poly_within(S=S,k1=2,k2=3,X=X,link="local",disc=TRUE,
# multi1=multi1,multi2=multi2,disp=TRUE,tol=tol)
#
# # Display output:
# out2$lk
# out2$Th1
# out2$piv1
# out2$Th2
# out2$piv2
# out2$De1
# out2$De2
# ## End(Not run)
## Not run:
# ## Fit the model under different situations for RLMS data
# # Example of use of the function to account for non-ignorable missing
# # item responses
# data(RLMS)
# X = RLMS[,1:4]
# Y = RLMS[,6:9]
# YR = cbind(Y,1*(!is.na(Y)))
# multi1 = 1:4
# multi2 = 5:8
# tol = 10^-6 # decrease tolerance to obtain more reliable results
#
# # MAR model
# out0 = est_multi_poly_within(YR,k1=3,k2=2,X=X,link="global",
# disc=TRUE,multi1=multi1,multi2=multi2,disp=TRUE,
# out_se=TRUE,glob=TRUE,tol=tol)
#
# # NMAR model
# multi1 = 1:8
# out1 = est_multi_poly_within(YR,k1=3,k2=2,X=X,link="global",
# disc=TRUE,multi1=multi1,multi2=multi2,disp=TRUE,
# out_se=TRUE,glob=TRUE,tol=tol)
#
# # testing effect of the latent trait on missingness
# c(out0$bic,out1$bic)
# (test1 = out1$ga1c[-1]/out1$sega1c[-1])
# ## End(Not run)
Run the code above in your browser using DataLab