## Not run:
# # Fit the model under different within-item multidimensional structures
# # for SF12_nomiss data
# data(SF12_nomiss)
# S = SF12_nomiss[,1:12]
# X = SF12_nomiss[,13]
#
# # Partial credit model with two latent variables sharing six items
# # (freedifficulty parameters and constrained discriminating parameters;
# # 1 to 3 latent classes for the 1st latent variable and 1 to 2 classes for the 2nd latent variable;
# # one covariate):
# multi1 = c(1:5, 8:12)
# multi2 = c(6:12, 1)
# out1 = search.model_within(S=S,kv1=1:3,kv2=1:2,X=X,link="global",disc=FALSE,
# multi1=multi1,multi2=multi2,disp=TRUE,
# out_se=TRUE,tol1=10^-4, tol2=10^-7, nrep=1)
#
# # Main output
# out1$lkv
# out1$aicv
# out1$bicv
# # Model with 2 latent classes for each latent variable
# out1$out.single[[4]]$k1
# out1$out.single[[4]]$k2
# out1$out.single[[4]]$Th1
# out1$out.single[[4]]$Th2
# out1$out.single[[4]]$piv1
# out1$out.single[[4]]$piv2
# out1$out.single[[4]]$ga1c
# out1$out.single[[4]]$ga2c
# out1$out.single[[4]]$Bec
# ## End(Not run)
Run the code above in your browser using DataLab