Learn R Programming

MLSeq (version 1.12.2)

confusionMat-methods: Accessors for the 'confusionMat' slot of an MLSeq object

Description

Confusion matrix for the trained model using classify function.

Usage

"confusionMat"(object)

Arguments

object
an MLSeq object

Details

confusionMat slot stores information about cross-tabulation of observed and predicted classes and corresponding statistics such as accuracy rate, sensitivity, specifity, etc.

Examples

Run this code
data(cervical)

data = cervical[c(1:150),]  # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.

n = ncol(data)  # number of samples
p = nrow(data)  # number of features

nTest = ceiling(n*0.2)  # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

# train set
data.train = data[,-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

# train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

# Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

confusionMat(rf)

	

Run the code above in your browser using DataLab