Learn R Programming

MLSeq (version 1.12.2)

ref-methods: Accessors for the 'ref' slot of an MLSeq object

Description

The reference class category for the trained model using classify function.

Usage

"ref"(object)

Arguments

object
an MLSeq object

Details

Reference class category is important while calculating the statistical measures for the confusion matrix obtained from classification models.

Examples

Run this code
data(cervical)

data = cervical[c(1:150),]  # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.

n = ncol(data)  # number of samples
p = nrow(data)  # number of features

nTest = ceiling(n*0.2)  # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

# train set
data.train = data[,-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

# train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

# Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

ref(rf)

Run the code above in your browser using DataLab