Learn R Programming

MLwrap (version 0.1.0)

table_best_hyperparameters: Best Hyperparameters Configuration

Description

The table_best_hyperparameters() function extracts and presents the optimal hyperparameter configuration identified during the model fine-tuning process. This function validates that the model has been properly trained and that hyperparameter tuning has been performed, combining both constant and optimized hyperparameters to generate a comprehensive table with the configuration that maximizes performance according to the specified primary metric. The function includes optional interactive visualization capabilities through the show_table parameter.

Usage

table_best_hyperparameters(analysis_object, show_table = FALSE)

Value

Tibble with best hyperparameter configuration.

Arguments

analysis_object

Fitted analysis_object with 'fine_tuning()'.

show_table

Boolean. Whether to show the table.

Examples

Run this code
# Note: For obtaining hyoperparameters table the user needs to
# complete till fine_tuning( ) function.

  # \donttest{

wrap_object <- preprocessing(df = sim_data,
                             formula = psych_well ~ depression + emot_intel + resilience,
                             task = "regression")
wrap_object <- build_model(wrap_object, "Random Forest")
wrap_object <- fine_tuning(wrap_object, "Bayesian Optimization")

# And then, you can obtain the best hyperparameters table.

table_best_hyp <- table_best_hyperparameters(wrap_object)

# }

Run the code above in your browser using DataLab