Learn R Programming

MLwrap (version 0.3.0)

plot_residuals_distribution: Plotting Residuals Distribution

Description

The plot_residuals_distribution() function generates histogram and kernel density visualizations of residuals for regression models on training and test datasets. Enables assessment of residual normality through visual inspection of histogram shape, detection of systematic biases indicating omitted variables or model specification errors, and identification of heavy tails suggesting outliers or influential observations.

Usage

plot_residuals_distribution(analysis_object)

Value

analysis_object

Arguments

analysis_object

Fitted analysis_object with 'fine_tuning()'.

See Also

table_best_hyperparameters

Examples

Run this code
# Note: For obtaining the residuals distribution plot the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline.
# See the full pipeline example under table_best_hyperparameters()
# Final call signature:
# plot_residuals_distribution(wrap_object)

Run the code above in your browser using DataLab