Learn R Programming

MLwrap (version 0.3.0)

plot_scatter_residuals: Plotting Residuals vs Predictions

Description

The plot_scatter_residuals() function Visualizes residuals plotted against fitted values to detect violations of ordinary least squares assumptions including homoscedasticity (constant error variance), linearity, and independence. Identifies heteroscedastic patterns (non-constant variance across the predictor range), systematic curvature indicating omitted polynomial terms, and outlier points with extreme residual magnitudes.

Usage

plot_scatter_residuals(analysis_object)

Value

analysis_object

Arguments

analysis_object

Fitted analysis_object with 'fine_tuning()'.

See Also

table_best_hyperparameters

Examples

Run this code
# Note: For obtaining the residuals vs. predicted values plot the user needs
# to complete till fine_tuning( ) function of the MLwrap pipeline.
# See the full pipeline example under table_best_hyperparameters()
# Final call signature:
# plot_scatter_residuals(wrap_object)

Run the code above in your browser using DataLab