Learn R Programming

MLwrap (version 0.3.0)

plot_tuning_results: Plotting Tuner Search Results

Description

The plot_tuning_results() function Visualizes hyperparameter optimization search results adapting output format to the optimization methodology employed. For Bayesian Optimization: displays iteration-by-iteration loss function evolution across iterations, acquisition function values guiding sequential hyperparameter sampling, and final hyperparameter configuration with cross-validation performance metrics. For Grid Search: displays performance surfaces across hyperparameter dimensions and rank-ordered configurations by validation performance.

Usage

plot_tuning_results(analysis_object)

Value

analysis_object

Arguments

analysis_object

Fitted analysis_object with 'fine_tuning()'.

See Also

table_best_hyperparameters

Examples

Run this code
# Note: For obtaining the plot with tuning results the user needs to
# complete till fine_tuning( ) function of the MLwrap pipeline.
# See the full pipeline example under table_best_hyperparameters()
# Final call signature:
# plot_tuning_results(wrap_object)

Run the code above in your browser using DataLab