require('MM4LMM')
data(VarianceComponentExample)
DataHybrid <- VarianceComponentExample$Data
KinF <- VarianceComponentExample$KinshipF
KinD <- VarianceComponentExample$KinshipD
##Build incidence matrix for each random effect
Zf <- t(sapply(as.character(DataHybrid$CodeFlint), function(x)
as.numeric(rownames(KinF)==x)))
Zd <- t(sapply(as.character(DataHybrid$CodeDent), function(x)
as.numeric(rownames(KinD)==x)))
##Build the VarList and ZList objects
VL = list(Flint=KinF , Dent=KinD , Error = diag(1,nrow(DataHybrid)))
ZL <- list(Flint=Zf , Dent=Zd , Error = diag(1,nrow(DataHybrid)))
##Perform inference
#A first way to call MMEst
ResultVA <- MMEst(Y=DataHybrid$Trait , Cofactor = matrix(DataHybrid$Trial)
, ZList = ZL , VarList = VL)
BlupVA <- MMBlup(Y=DataHybrid$Trait , Cofactor = matrix(DataHybrid$Trial)
, ZList = ZL , VarList = VL , ResMM=ResultVA)
Run the code above in your browser using DataLab