require('MM4LMM')
#### Example 1: variance component analysis, 1 model
data(VarianceComponentExample)
DataHybrid <- VarianceComponentExample$Data
KinF <- VarianceComponentExample$KinshipF
KinD <- VarianceComponentExample$KinshipD
##Build incidence matrix for each random effect
Zf <- t(sapply(as.character(DataHybrid$CodeFlint), function(x)
as.numeric(rownames(KinF)==x)))
Zd <- t(sapply(as.character(DataHybrid$CodeDent), function(x)
as.numeric(rownames(KinD)==x)))
##Build the VarList and ZList objects
VL = list(Flint=KinF , Dent=KinD , Error = diag(1,nrow(DataHybrid)))
ZL <- list(Flint=Zf , Dent=Zd , Error = diag(1,nrow(DataHybrid)))
##Perform inference
#A first way to call MMEst
ResultVA <- MMEst(Y=DataHybrid$Trait , Cofactor = matrix(DataHybrid$Trial)
, ZList = ZL , VarList = VL)
length(ResultVA)
print(ResultVA)
#A second way to call MMEst (same result)
Formula <- as.formula('~ Trial')
ResultVA2 <- MMEst(Y=DataHybrid$Trait , Cofactor = DataHybrid,
formula = Formula
, ZList = ZL , VarList = VL)
length(ResultVA2)
print(ResultVA2)
#### Example 2: Marker Selection with interaction between Cofactor and X matrix
Formula <- as.formula('~ Trial+Xeffect+Xeffect:Trial')
ResultVA3 <- MMEst(Y=DataHybrid$Trait , Cofactor = DataHybrid,
X = VarianceComponentExample$Markers,
formula = Formula
, ZList = ZL , VarList = VL)
length(ResultVA3)
print(ResultVA3[[1]])
#### Example 3: QTL detection with two variance components
data(QTLDetectionExample)
Pheno <- QTLDetectionExample$Phenotype
Geno <- QTLDetectionExample$Genotype
Kinship <- QTLDetectionExample$Kinship
##Build the VarList object
VLgd <- list(Additive=Kinship , Error=diag(1,length(Pheno)))
##Perform inference
ResultGD <- MMEst(Y=Pheno , X=Geno
, VarList=VLgd , CritVar = 10e-5)
length(ResultGD)
print(ResultGD[[1]])
Run the code above in your browser using DataLab