# load DBA objects with peak profiles
data(Cfp1Profiles)
Cfp1Norm <- getNormFactors(Cfp1Profiles)
Cfp1Norm$MD$NormFactors
# compare total counts before and after normalisation:
boxplot(Cfp1Norm$MD$RawTotalCounts[,1:3], ylim=c(0,2000))
boxplot(Cfp1Norm$MD$NormTotalCounts[,1:3], ylim=c(0,2000))
# compare individual peak profiles before and after normalisation,
# using plotPeak, e.g.:
plotPeak(Cfp1Norm, Peak.id=20, NormMethod = NULL)
plotPeak(Cfp1Norm, Peak.id=20, NormMethod = 'DESeq')
# You can also specify a subset of samples which should be normalised, e.g:
SampleIDs <- c("WT.AB2", "Null.AB2")
Cfp1Norm2 <- getNormFactors(Cfp1Profiles, SampleIDs=SampleIDs)
# Or you can specify a subset of peaks which should be used to determine
# the normalisation factors. For example run findOutliers:
Cfp1 <- findOutliers(Cfp1Profiles, range=5)
PeakIDs <- Cfp1$MD$Filter$FiltPeakIds
Cfp1Norm3 <- getNormFactors(Cfp1, PeakIDs = PeakIDs)
Run the code above in your browser using DataLab