DBAmmd Class defines a container for differential binding analysis
using MMDiff2. For this class a number of methods is foreseen, among which
accessors for every slot.
As MetaData, it needs to contain the path to the data directory and the
name of a sampleSheet csv file.
DBAmmd()returns an empty DBAmmd Object.
DBAmmd(MetaData) initializes a DBAmmd Object for a new
Experiment.
(See below and the package vignette for more details.)MetaData:ExpData and an
AnaData compartment. "ExpData" needs a dataDir and a
SampleSheet entry. A genome entry, which should be a valid
BSGenome name, is useful to find sequence motifs. (Note the genome
version needs to correspond to the one used for the read alignment.
Use available.genomes() to find the right name.) The AnaData
entry is used to store and access parameters for the MMDiff2 Analysis, like the sigma
of the RBF Kernel.rowRanges:Reads:getPeakReads to fill this slot and estimateFragmentCenters
to add the (estimated) positions of fragment centers.RawTotalCounts:RawCounts.p:RawCounts.n:Hists:compHists() for more details.DISTs:compDists() for more details.mCounts:Contrasts:DBAmmd-Accessors,getPeakReads
## Example using a small data set provided in the MMDiffBamSubset package
# setting the Experiment meta data:
ExpData <- list(dataDir=system.file("extdata", package="MMDiffBamSubset"),
sampleSheet="Cfp1.csv")
MetaData <- list('ExpData' = ExpData)
# Creating a DBAmmd data set:
MMD <- DBAmmd(MetaData)
Run the code above in your browser using DataLab