get.score.main(time, event, treat, bio, covar = NULL, nfolds = 5, alpha = 0.5)
NULL
for not including any covariates.
cv.glmnet()
in the ``glmnet'' package is called, which requires cross validation to choose the tuning parameter ``lambda''. Default is 5.
glmnet
fitted object assuming no subgroups exist.lambda
value chosen when assuming no subgroups exist.coxph()
using selected biomarkers when assuming no subgroups exist.survfit()
for bootstrap sampling.MMMS()
to obtain bootstrap-based p-values. A main-effect model is considered by assuming that no treatment-specific subgroups exist. This function is used for obtaining (semi)parametric bootstrap samples under the null.
MMMS
, get.score
# load the dataset
data(simdat)
attach(simdat)
# get composite scores using a main-effect model
main.only=get.score.main(time,event,treat,bio,covar,nfolds=5,alpha=0.5)
Run the code above in your browser using DataLab