Learn R Programming

MNB (version 1.2.0)

global.MNB: Global influence

Description

It performers influence analysis by a global influence to evaluate the impact on the parameter estimates when we remove a particular observation.

Usage

global.MNB(formula, star, dataSet, plot = TRUE)

Value

L and graphics

Arguments

formula

The structure matrix of covariates of dimension n x p (in models that include an intercept x should contain a column of ones).

star

Initial values for the parameters to be optimized over.

dataSet

data

plot

TRUE or FALSE. Indicates if a graph should be plotted.

Author

Jalmar M F Carrasco <carrascojalmar@gmail.com>, Cristian M Villegas Lobos <master.villegas@gmail.com> and Lizandra C Fabio <lizandrafabio@gmail.com>

Details

The function returns a list (L) with the generalized Cook distance, Likelihood displacement and index plot.

References

  • Fabio, L. C., Villegas, C., Carrasco, J. M. F., and de Castro, M. (2023). Diagnostic tools for a multivariate negative binomial model for fitting correlated data with overdispersion. Communications in Statistics - Theory and Methods, 52, 1833–1853.

Examples

Run this code

# \donttest{

data(seizures)
head(seizures)

star <-list(phi=1, beta0=1, beta1=1, beta2=1, beta3=1)
global.MNB(formula=Y ~ trt + period +
trt:period + offset(log(weeks)),star=star,dataSet=seizures,plot=FALSE)

# }

Run the code above in your browser using DataLab