Learn R Programming

MOLHD (version 0.2)

mpLHD: Generate the optimal MaxPro Latin Hypercube Design.

Description

Generate the optimal MaxPro Latin Hypercube Design.

Usage

mpLHD(n, p, temp0 = 0, nstarts = 1, times = 300, maxiter = 1e+06)

Arguments

n

number of runs desired

p

number of design factors desired

temp0

Initial temperature for simulated annealing

nstarts

Optional, default is "1". The number of random starts

times

Optional, default is "300". The maximum number of non-improving searches allowed. Lower this parameter if you expect the search to converge faster.

maxiter

Optional, default is "1e+06".The maximum total number of iterations. Lower this number if the design is prohibitively large and you want to terminate the search prematurely to report the best design found

Value

design

The optimal LHD design matrix based on the MaxPro criterion

criterion

The MaxPro criterion of the selected optimal LHD design

iterations

The total iterations

time_rec

Time to complete the search

Details

This function is to search the optimal Latin Hypercube Design based on the MaxPro criterion using the columnwise exchange algorithm coupled with the simulated annealing algorithm, and several computational shortcuts to improve efficiency.

Examples

Run this code
# NOT RUN {
#Generate a optimal maximum projection LHD(20,2) design
D=mpLHD(n=20,p=2)
D$design
D$criterion
# }

Run the code above in your browser using DataLab