Usage
check.margins(data, I, J, K, nvars, model.vars, item.names)
check.min(value)
check.zero(value, add.constant = .5)
data.format(data, I, J, K, nvars, add.constant = .5, model.vars = NULL,
predict.func = FALSE)
est.jack(mu.hat, i, I, J, K)
ipf.genloglin(data, I, J, K, nvars, p, p.theta.2, p.theta.3, x.theta.2,
x.theta.3)
Arguments
data
For check.margins
, the marginal counts for a bootstrap resample.
For data.format
and observed data, a data frame containing the raw MRCV data. For bootstrap resamples, a data frame containing the joint table cell counts.
Fo
I
The number of items corresponding to row variable W.
J
The number of items corresponding to column variable Y.
K
The number of items corresponding to strata variable Z.
nvars
The number of MRCVs.
model.vars
For check.margins
and the two MRCV case, a data frame containing 2Ix2J rows and 4 columns generically named W
, Y
, wi
, and yj
. For the three MRCV case, a data frame containing 2Ix2Jx2K rows
item.names
The names of the MRCV items as labeled and ordered in the data frame containing the raw MRCV data.
value
A numeric vector of length = 1.
add.constant
A positive constant to be added to all zero marginal cell counts.
mu.hat
A data frame containing the estimated counts from a model based on n-1 subjects.
p
A data frame with 2^(I+J) (or 2^(I+J+K)) rows and column variables W1
,...,WI
, Y1
,...,YJ
, Z1
,...,ZK
, and p
(in this order). The third set of items is only necessary
p.theta.2
For the two MRCV case. See Gange (1995, p. 136) for details. Note that ipf.genloglin
uses cell counts instead of probabilities.
p.theta.3
For the three MRCV case. See Gange (1995, p. 136) for details. Note that ipf.genloglin
uses cell counts instead of probabilities.
x.theta.2
For the two MRCV case. See Gange (1995, p. 136) for details. Note that ipf.genloglin
uses cell counts instead of probabilities.
x.theta.3
For the three MRCV case. See Gange (1995, p. 136) for details. Note that ipf.genloglin
uses cell counts instead of probabilities.