# NOT RUN {
# Load predefined simulated data
# Data pre-processing
# The 1st column of the input matrix will be the
# genotype of the expression quantitative trait loci
# (eQTL)/Copy number variation (CNVs) and the remaining
# columns are the gene expression data.
# We used pre-assigned level alpha = 0.05 that ensures
# FDR and mFDR remains below 0.05.
# Model 1
data <- simu_data_M1 # load data for model 1
n <- nrow(data) # Number of row
V <- colnames(data) # Column names
# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
n = n)
# Infer a graph skeleton
Skel.fit <- ModiSkeleton(data,
suffStat = suffStat_C,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)
# Plot the results
plot(Skel.fit@graph,
main ="Estimated Skeleton")
# Other models are available and may be called as follows:
# Model 0
# data <- simu_data_M0
# Model 2
# data <- simu_data_M2
# Model 3
# data <- simu_data_M3
# Model 4
# data <- simu_data_M4
# Model Multiparent
# data <- simu_data_multiparent
# Model Star
# data <- simu_data_starshaped
# Model Layered
# data <- simu_data_layered
# }
Run the code above in your browser using DataLab