# NOT RUN {
# Data pre-processing
# If you use only one genotype of the expression quantitative trait loci
# (eQTL)/Copy number variation (CNV), the 1st column of
# the input matrix will be #eQTL/CNV and the remaining
# columns are the gene expression data.
## Model 0
simu_data_M0 <- SimulateData(N = 10^3,
p = 0.45,
'model0',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Model 1
simu_data_M1 <- SimulateData(N = 10^3,
p = 0.45,
'model1',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Model 2
simu_data_M2 <- SimulateData(N = 10^3,
p = 0.45,
'model2',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Model 3
simu_data_M3 <- SimulateData(N = 10^3,
p = 0.45,
'model3',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Model 4
simu_data_M4 <- SimulateData(N = 10^3,
p = 0.45,
'model4',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Multiple Parent Model
simu_data_multiparent <- SimulateData(N = 10^3,
p = 0.45,
'multiparent',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Star Model
simu_data_starshaped <- SimulateData(N = 10^3,
p = 0.45,
'starshaped',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
## Layered Model
simu_data_layered <- SimulateData(N = 10^3,
p = 0.45,
'layered',
b0.1 = 0,
b1.1 = 1,
b1.2 = 1,
b1.3 = 1,
sd.1 = 1)
# }
Run the code above in your browser using DataLab