Learn R Programming

MRS (version 1.1)

mrs: Multi Resolution Scanning

Description

This function executes the Multi Resolution Scanning algorithm to detect differences across multiple distributions.

Usage

mrs(X, G, n_groups = length(unique(G)), Omega = "default", K = 6, init_state = NULL, beta = 1, gamma = 0.3, eta = 0.3, alpha = 0.5, return_global_null = TRUE, return_tree = TRUE, min_n_node = 0)

Arguments

X
Matrix of the data. Each row represents an observation.
G
Numeric vector of the group label of each observation. Labels are integers starting from 1.
n_groups
Number of groups.
Omega
Matrix defining the vertices of the sample space. The "default" option defines a hyperrectangle containing all the data points. Otherwise the user can define a matrix where each row represents a dimension, and the two columns contain the associated lower and upper limits for each dimension.
K
Depth of the tree. Default is K = 5, while the maximum is K = 14.
init_state
Initial state of the hidden Markov process. The three states are null, altenrative and prune, respectively.
beta
Spatial clustering parameter of the transition probability matrix. Default is beta = 1.
gamma
Parameter of the transition probability matrix. Default is gamma = 0.3.
eta
Parameter of the transition probability matrix. Default is eta = 0.3.
alpha
Pseudo-counts of the Beta random probability assignments. Default is alpha = 0.5.
return_global_null
Boolean indicating whether to return the posterior probability of the global null hypothesis.
return_tree
Boolean indicating whether to return the posterior representative tree.
min_n_node
Node in the tree is returned if there are more than min_n_node data-points in it.

Value

An mrs object.

Examples

Run this code
set.seed(1)
n = 20
p = 2
X = matrix(c(runif(p*n/2),rbeta(p*n/2, 1, 4)), nrow=n, byrow=TRUE)
G = c(rep(1,n/2), rep(2,n/2))
ans = mrs(X=X, G=G)

Run the code above in your browser using DataLab