data(data_distal_continuous, package = "MRTAnalysis")
## Fast example: marginal effect with linear nuisance (CRAN-friendly)
fit_lm <- dcee(
data = data_distal_continuous,
id = "userid", outcome = "Y", treatment = "A", rand_prob = "prob_A",
moderator_formula = ~1, # marginal (no moderators)
control_formula = ~X, # simple linear nuisance
availability = "avail",
control_reg_method = "lm",
cross_fit = FALSE
)
summary(fit_lm)
summary(fit_lm, show_control_fit = TRUE) # show Stage-1 fit info
## Moderated effect with GAM nuisance (allows smooth terms); may be slower
# \donttest{
fit_gam <- dcee(
data = data_distal_continuous,
id = "userid", outcome = "Y", treatment = "A", rand_prob = "prob_A",
moderator_formula = ~Z, # test moderation by Z
control_formula = ~ s(X) + Z, # smooth in nuisance via mgcv::gam
availability = "avail",
control_reg_method = "gam",
cross_fit = TRUE, cf_fold = 5
)
summary(fit_gam, lincomb = c(0, 1)) # linear combo: the Z coefficient
summary(fit_gam, show_control_fit = TRUE) # show Stage-1 fit info
# }
## Optional: SuperLearner (runs only if installed)
# \donttest{
if (requireNamespace("SuperLearner", quietly = TRUE)) {
library(SuperLearner)
fit_sl <- dcee(
data = data_distal_continuous,
id = "userid", outcome = "Y", treatment = "A", rand_prob = "prob_A",
moderator_formula = ~1,
control_formula = ~ X + Z,
availability = "avail",
control_reg_method = "sl",
cross_fit = FALSE
)
summary(fit_sl)
}
# }
Run the code above in your browser using DataLab