# Known p (MRT randomization), GLM for other nuisances
cfg_p <- mcee_config_maker("p", known = 0.5)
cfg_q <- mcee_config_maker("q", method = "glm", formula = ~ dp + M)
cfg_eta <- mcee_config_maker("eta", method = "glm", formula = ~dp)
cfg_mu <- mcee_config_maker("mu", method = "glm", formula = ~ dp + M)
cfg_nu <- mcee_config_maker("nu", method = "glm", formula = ~dp)
# SuperLearner with default library (set explicitly if you prefer)
# cfg_q_sl <- mcee_config_maker("q", method = "sl", formula = ~ dp + M,
# SL.library = c("SL.mean","SL.glm","SL.ranger"))
# Known treatment-specific outcome regressions (e.g., from external source)
# cfg_eta_known <- mcee_config_maker("eta", known_a1 = rep(1, 100),
# known_a0 = rep(0, 100))
Run the code above in your browser using DataLab