set.seed(1)
n <- 10
T <- 4
id <- rep(1:n, each = T)
dp <- rep(1:T, times = n)
A <- rbinom(n * T, 1, 0.5)
M <- rbinom(n * T, 1, plogis(-0.2 + 0.3 * A + 0.1 * dp))
Y <- ave(0.5 * A + 0.6 * M + 0.1 * dp + rnorm(n * T), id)
dat <- data.frame(id, dp, A, M, Y)
cfg <- list(
p = mcee_config_known("p", 0.5),
q = mcee_config_glm("q", ~ dp + M),
eta = mcee_config_glm("eta", ~dp),
mu = mcee_config_glm("mu", ~ dp + M),
nu = mcee_config_glm("nu", ~dp)
)
fit_gen <- mcee_general(dat, "id","dp","Y","A","M",
time_varying_effect_form = ~ dp,
config_p=cfg$p, config_q=cfg$q, config_eta=cfg$eta, config_mu=cfg$mu, config_nu=cfg$nu)
Run the code above in your browser using DataLab