Learn R Programming

MSBVAR (version 0.2.2)

rmse: Root mean squared error of a Monte Carlo / MCMC sample of forecasts

Description

Computes the root mean squared error (RMSE) of a Monte Carlo sample of forecasts.

Usage

rmse(m1, m2)

Arguments

Value

Forecast RMSE.

Details

User needs to subset the forecasts if necessary.

See Also

mae, forecast

Examples

Run this code
data(IsraelPalestineConflict)
Y.sample1 <- window(IsraelPalestineConflict, end=c(2002, 52))
Y.sample2 <- window(IsraelPalestineConflict, start=c(2003,1))

# Fit a BVAR model
fit.bvar <- szbvar(Y.sample1, p=6, lambda0=0.6, lambda1=0.1, lambda3=2,
                   lambda4=0.25, lambda5=0, mu5=0, mu6=0, prior=0)

# Forecast -- this gives back the sample PLUS the forecasts!

forecasts <- forecast(fit.bvar, nsteps=nrow(Y.sample2))

# Compare forecasts to real data
rmse(forecasts[(nrow(Y.sample1)+1):nrow(forecasts),], Y.sample2)

Run the code above in your browser using DataLab