msbvar(y, z = NULL, p, h, lambda0, lambda1, lambda3, lambda4,
lambda5, mu5, mu6, qm,
alpha.prior = 100 * diag(h) + matrix(2, h, h),
prior=0, max.iter = 40)szbvar for details. This function should NOT be used for inference, since it only finds the
posterior mode of the model. This function is intended to generate
starting values for the Gibbs sampling of the model. See
gibbs.msbvar for further details of the Gibbs sampling.
Fruhwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer Series in Statistics New York: Springer. Sims, Christopher A. and Daniel F. Waggoner and Tao Zha. 2008. "Methods for inference in large multiple-equation Markov-switching models" Journal of Econometrics 146(2):255--274. Sims, Christopher A. and Tao A. Zha. 1998. "Bayesian Methods for Dynamic Multivariate Models" International Economic Review 39(4):949-968. Sims, Christopher A. and Tao A. Zha. 2006. "Were There Regime Switches in U.S. Monetary Policy?" American Economic Review. 96(1):54--81.
gibbs.msbvar, szbvar