tinyErr: Remove observation, implementation, and process error
Description
Takes an existing OM object and converts it to one without any observation
error, implementation error, very little process error, and/or gradients in
life history parameters and catchability.
Usage
tinyErr(x, ...)# S4 method for OM
tinyErr(x, obs = TRUE, imp = TRUE, proc = TRUE, grad = TRUE, silent = FALSE)
Value
An updated object of class OM
Arguments
- x
- An object of class - OM
 
- ...
- Arguments to generic function 
- obs
- Logical. Remove observation error? - Obsis replaced with- Perfect_Info
 
- imp
- Logical. Remove implementation error? - Impis replaced with- Perfect_Imp
 
- proc
- Logical. Remove process error? All - sdand- cvslots in- Stockand- Fleetobject are set to 0.
 
- grad
- Logical. Remove gradients? All - gradslots in- Stockand- qincin- Fleetare set to 0.
 
- silent
- Logical. Display messages? 
Details
Useful for debugging and testing that MPs perform as expected under perfect conditions.
Examples
Run this codeOM_noErr <- tinyErr(MSEtool::testOM)
Run the code above in your browser using DataLab