This function generates multivariate survival data. Letting \(i=1,...,N\) number of clusters, \(j=1,...,K\) number of units per cluster, and \(X_{ij}\) be a candidate covariate, the following multivariate survival models can be used:
gamma.frailty: \(\hspace{2mm}\) \(\lambda_{ij}(t)=\exp(\beta_{0}+\beta_{1} \cdot I(X_{ij} \leq c)) w_{i}\) with \(w_{i} \sim \Gamma(1/v, 1/v)\)
log.normal.frailty: \(\hspace{2mm}\) \(\lambda_{ij}(t)=\exp(\beta_{0}+\beta_{1} \cdot I(X_{ij} \leq c) + w_{i})\) with \(w_{i} \sim N(0, v)\)
marginal.multivariate.exponential: \(\hspace{2mm}\) \(\lambda_{ij}(t)=\exp(\beta_{0}+\beta_{1} \cdot I(X_{ij} \leq c))\) absolutely continuous
marginal.nonabsolutely.continuous: \(\hspace{2mm}\) \(\lambda_{ij}(t)=\exp(\beta_{0}+\beta_{1} \cdot I(X_{ij} \leq c))\) not absolutely continuous
nonPH.weibull: \(\hspace{2mm}\) \(\lambda_{ij}(t)=\lambda_{0}(t) \exp(\beta_{0}+\beta_{1} \cdot I(X_{ij} \leq c)) w_{i}\) with \(w_{i} \sim \Gamma(1/v ,1/v)\) and
\(\hspace{96mm}\) \(\lambda_{0}(t)=\alpha \lambda t^{\alpha-1}\)
The user specifies the coefficients (\(\beta_{0}\) and \(\beta_{1}\)), the cutoff values, the censoring rate, and the model with the respective parameters.