#Not run
## Not run:
# data(Agilent_quantT_MSclust)
# MS.clust(Agilent_quantT_MSclust, quant=TRUE, clV=TRUE, ncmin=10, ncmax=50,
# varRT = 0.1, disMeth="euclidean", linkMeth="ward", clustMeth="hierarchical")
#
# #When asked type 1 then press ENTER then type 21 and finally press ENTER
#
# ## 21 clusters have been determined as the optimal number of cluters.
# ##with the option quant=TRUE, generate profiling matrices in output
#
# data(Agilent_quantF_MSclust)
# MS.clust(Agilent_quantF_MSclust, quant=FALSE, clV=FALSE, Nbc=21,
# varRT = 0.1, disMeth="euclidean", linkMeth="ward", clustMeth="hierarchical")
# ##with clV=FALSE, if you already know the number of molecules in the dataset
# ##with the option quant=FALSE, generate a fingerprinting matrix in output
#
# data(ASCII_MSclust)
# MS.clust(ASCII_MSclust, quant=FALSE, clV=TRUE, ncmin=10, ncmax=50,
# varRT = 0.1, disMeth="euclidean", linkMeth=NULL, clustMeth="kmeans")
#
# #When asked type 3 then press ENTER then type 26 press ENTER
# #type 28 press ENTER, type 30 and finally press ENTER
#
# ## output files are generated for three different numbers of clusters.
# ## with 3 as the number of clustering separations
# ## 26 # First number of clusters
# ## 28 # Second number of clusters
# ## 30 # Third number of clusters
# ## End(Not run)
Run the code above in your browser using DataLab