dataProcess
) as input and automatically generate three types of figures in pdf files as output : (1) profile plot (specify "ProfilePlot" in option type), to identify the potential sources of variation for each protein; (2) quality control plot (specify "QCPlot" in option type), to evaluate the systematic bias between MS runs; (3) mean plot for conditions (specify "ConditionPlot" in option type), to illustrate mean and variability of each condition per protein. dataProcessPlots(data=data,
type=type,
featureName="Transition",
ylimUp=FALSE,
ylimDown=FALSE,
scale=FALSE,
interval="CI",
x.axis.size=10,
y.axis.size=10,
text.size=4,
text.angle=0,
legend.size=7,
dot.size.profile=2,
dot.size.condition=3,
width=10,
height=10,
which.Protein="all",
originalPlot=TRUE,
summaryPlot=TRUE,
save_condition_plot_result=FALSE,
address="")
The input of this function is the quantitative data from function (dataProcess
).
Ching-Yun Chang, Paola Picotti, Ruth Huttenhain, Viola Heinzelmann-Schwarz, Marko Jovanovic, Ruedi Aebersold, Olga Vitek. "Protein significance analysis in selected reaction monitoring (SRM) measurements." Molecular & Cellular Proteomics, 11:M111.014662, 2012.
Timothy Clough, Safia Thaminy, Susanne Ragg, Ruedi Aebersold, Olga Vitek. "Statistical protein quantification and significance analysis in label-free LC-M experiments with complex designs" BMC Bioinformatics, 13:S16, 2012.
#Consider quantitative data (i.e. QuantData) from a yeast study with ten time points of interests, three biological replicates, and no technical replicates which is a time-course experiment.
#The goal is to provide pre-analysis visualization by automatically generate two types of figures in two separate pdf files.
#Protein IDHC (gene name IDP2) is differentially expressed in time point 1 and time point 7, whereas, Protein PMG2 (gene name GPM2) is not.
QuantData<-dataProcess(SRMRawData)
head(QuantData$ProcessedData)
# Profile plot
dataProcessPlots(data=QuantData,type="ProfilePlot")
# Quality control plot
dataProcessPlots(data=QuantData,type="QCPlot")
# Quantification plot for conditions
dataProcessPlots(data=QuantData,type="ConditionPlot")
Run the code above in your browser using DataLab