dataProcess
) as input and automatically generate two types of figures in pdf files as output : (1) normal quantile-quantile plot (specify "QQPlot" in option type) for checking normally distributed errors.; (2) residual plot (specify "ResidualPlot" in option type) for checking constant variance among different features.modelBasedQCPlots(data,type,
axis.size=10,dot.size=3,text.size=7,legend.size=7,
width=10, height=10,
featureName=TRUE,feature.QQPlot="all",which.Protein="all",address="")
The input of this function is "ModelQC" in the results from function (dataProcess
).
Timothy Clough, Safia Thaminy, Susanne Ragg, Ruedi Aebersold, Olga Vitek. "Statistical protein quantification and significance analysis in label-free LC-M experiments with complex designs" BMC Bioinformatics, 13:S16, 2012.
QuantData<-dataProcess(SRMRawData, summaryMethod="linear", censoredInt=NULL)
head(QuantData$ModelQC)
# normal quantile-quantile plots
modelBasedQCPlots(data=QuantData$ModelQC,type="QQPlots",address="")
# residual plots
modelBasedQCPlots(data=QuantData$ModelQC,type="ResidualPlots",address="")
Run the code above in your browser using DataLab