transformMSnSetToMSstats(ProteinName,PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge,
IsotopeLabelType, Bioreplicate,Run, Condition, data)
phenoData
component of MSnSet that contains labeling information. If not assigned, "mz" column will be used.phenoData
component of MSnSet that contains unique ids of biological replicates of the corresponding samples. If not assigned, rownames of pData(data) will be used.phenoData
that correspond to the group variables of interest. If more than one variable is listed, a concatentated variable is created based on the variables.raw : See MSnSet
for the general format on the proteomics. Condition must be specified. Intensity should not be specified, as this information is extracted automatically from the assayData component of the MSnSet.
Ching-Yun Chang, Paola Picotti, Ruth Huttenhain, Viola Heinzelmann-Schwarz, Marko Jovanovic, Ruedi Aebersold, Olga Vitek. "Protein significance analysis in selected reaction monitoring (SRM) measurements." Molecular & Cellular Proteomics, 11:M111.014662, 2012.
Timothy Clough, Safia Thaminy, Susanne Ragg, Ruedi Aebersold, Olga Vitek. "Statistical protein quantification and significance analysis in label-free LC-M experiments with complex designs" BMC Bioinformatics, 13:S16, 2012.
Gatto, L. and Lilly, K.S. (2012). MSnbase-an R Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics, 28, 288-289.
library("MSnbase")
data(itraqdata)
class(itraqdata)
msnset <- quantify(itraqdata[10:15], method = "trap", reporters = iTRAQ4, verbose = FALSE)
msnset
pData(msnset)$group<-c("control","disease","control","disease")
transformMSnSetToMSstats(data=msnset,Condition="group")
Run the code above in your browser using DataLab