Learn R Programming

MTLR

The goal of MTLR is to provide an R implementation for Multi-Task Logistic Regression. In addition to supplying the model provided by Yu et al. we have extended the model for left censoring, interval censoring, and a mixture of censoring types. Functionality includes training an MTLR model, predicting survival curves for new observations, and plotting these survival curves and feature weights estimated by MTLR.

Installation

You can install the version from CRAN or the development version from GitHub:

# CRAN:
install.packages("MTLR")

# GitHub:
# install.packages("devtools")
devtools::install_github("haiderstats/MTLR")

Example

Given a survival dataset containing event time and event status indicator (censored/uncensored) we can produce an MTLR model. For example, consider the lung dataset from the survival package:

# Load survival for the lung dataset and the Surv() function.
library(survival)
#Here we will use 9 intervals (10 time points) just for plotting purposes. 
#The default is sqrt the number of observations.
mod <- mtlr(Surv(time,status)~., data = lung, nintervals = 9)
print(mod)
#> 
#> Call:  mtlr(formula = Surv(time, status) ~ ., data = lung, nintervals = 9) 
#> 
#> Time points:
#>  [1]  62.3 145.4 179.3 210.4 241.4 284.5 308.2 383.5 476.3 642.8
#> 
#> 
#> Weights:
#>           Bias      inst      age      sex ph.ecog ph.karno pat.karno meal.cal  wt.loss
#> 62.27   0.1147 -0.017981  0.04891 -0.01249 0.00461 -0.00648   0.01352 -0.02617 -0.01325
#> 145.36  0.1362 -0.021147  0.03275 -0.00473 0.02312 -0.02227  -0.01753 -0.01105 -0.02974
#> 179.27  0.2119 -0.008203  0.02260 -0.02564 0.02394 -0.02046  -0.03161 -0.02310 -0.02218
#> 210.36  0.0398  0.000359  0.00816 -0.03638 0.04704 -0.02230  -0.04129 -0.01410 -0.03367
#> 241.36 -0.0996  0.009570 -0.01581 -0.04405 0.06690 -0.04139  -0.05453 -0.00808 -0.01288
#> 284.55 -0.2299  0.004869 -0.00476 -0.05180 0.04824 -0.02107  -0.03135  0.00237 -0.02552
#> 308.18 -0.3012 -0.007743 -0.00467 -0.05426 0.04908 -0.02280  -0.03264 -0.01608  0.02130
#> 383.45 -0.0289 -0.019985 -0.01030 -0.03263 0.02868 -0.00680  -0.02321 -0.01458 -0.00235
#> 476.27 -0.1285 -0.010232  0.00106 -0.02226 0.01715  0.01699  -0.01555 -0.02112 -0.01587
#> 642.82 -0.3513 -0.014975  0.02291 -0.02548 0.01847  0.00556  -0.00856  0.00373 -0.00552
#Plot feature weights:
plot(mod)
#Get survival curves for the lung dataset:
curves <- predict(mod)
#Plot the first 20 survival curves:
plotcurves(curves, 1:20)

Copy Link

Version

Install

install.packages('MTLR')

Monthly Downloads

331

Version

0.2.1

License

GPL-2 | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Humza Haider

Last Published

June 3rd, 2019

Functions in MTLR (0.2.1)

predict.mtlr

Predictions for MTLR
plot.mtlr

Graphical Representation of Feature Weights
plotcurves

Graphically Visualize MTLR Survival Curves
mtlr_cv

MTLR Internal Cross-Validation for Selecting C1.
mtlr

Train a Multi-Task Logistic Regression (MTLR) Model
print.mtlr

Printing an MTLR object.
create_folds

Create folds for cross-validation.