hz: Henze-Zirkler Test for Multivariate Normality
Description
Performs Henze and Zirkler's test to assess multivariate normality based on a log-normal approximation of the test statistic.
Usage
hz(
data,
use_population = TRUE,
tol = 1e-25,
bootstrap = FALSE,
B = 1000,
cores = 1
)
Value
A data frame with one row, containing the following columns:
Test
, the name of the test ("Henze-Zirkler");
HZ
, the test statistic (numeric);
and p.value
, the p-value computed from a log-normal approximation.
Arguments
- data
A numeric matrix or data frame with observations in rows and variables in columns.
- use_population
Logical; if TRUE
, uses the population covariance estimator \(\frac{n-1}{n} \times \Sigma\); otherwise uses the sample covariance. Default is TRUE
.
- tol
Numeric tolerance passed to solve
when inverting the covariance matrix. Default is 1e-25
.
- bootstrap
Logical; if TRUE
, compute p-value via bootstrap
resampling. Default is FALSE
.
- B
Integer; number of bootstrap replicates used when
bootstrap = TRUE
. Default is 1000
.
- cores
Integer; number of cores for parallel computation when
bootstrap = TRUE
. Default is 1.
Examples
Run this codeif (FALSE) {
data <- iris[1:50, 1:4]
hz_result <- hz(data)
hz_result
}
Run the code above in your browser using DataLab